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Abstract: Objective: To address the problem of volume conduction and active reference electrodes in
the assessment of functional connectivity, we propose a novel measure to quantify phase synchroniza-
tion, the phase lag index (PLI), and compare its performance to the well-known phase coherence (PC),
and to the imaginary component of coherency (IC).

Methods: The PLI is a measure of the asymmetry of the distribution of phase differences between two
signals. The performance of PLI, PC, and IC was examined in (i) a model of 64 globally coupled oscil-
lators, (ii) an EEG with an absence seizure, (iii) an EEG data set of 15 Alzheimer patients and 13 con-
trol subjects, and (iv) two MEG data sets.

Results: PLI and PC were more sensitive than IC to increasing levels of true synchronization in the
model. PC and IC were influenced stronger than PLI by spurious correlations because of common
sources. All measures detected changes in synchronization during the absence seizure. In contrast to
PC, PLI and IC were barely changed by the choice of different montages. PLI and IC were superior to
PC in detecting changes in beta band connectivity in AD patients. Finally, PLI and IC revealed a differ-
ent spatial pattern of functional connectivity in MEG data than PC.

Conclusion: The PLI performed at least as well as the PC in detecting true changes in synchronization inmodel
and real data but, at the same token and like-wise the IC, it wasmuch less affected by the influence of common
sources and active reference electrodes.HumBrainMapp 28:1178–1193, 2007. VVC 2007Wiley-Liss, Inc.
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INTRODUCTION

Higher brain functions depend upon a delicate balance
between local specialization and global integration of
brain processes [Friston, 2001; Le van Quyen, 2003; Stam,
2005; Tononi et al., 1998]. Viewing the brain as a complex
network of interacting subsystems has led to a shift from
searching for locally activated patches of cortex toward
identifying task-related functional networks. This search
raised several important questions. For instance, what
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factors determine the organization of these networks, and
how does communication in these networks take place?
With respect to the last question, there is by now ample
evidence that synchronization of neural activity consti-
tutes an important physiological mechanism for func-
tional integration [e.g., Fries, 2005; Singer, 1999; Varela
et al., 2001].
Neurophysiological techniques like EEG and MEG have

a high temporal resolution and are thus rather suitable for
identifying synchronization across frequency bands in
large-scale functional networks. In encephalographic re-
cordings, synchronization is usually quantified via linear
measures like coherence or via nonlinear measures like
those based upon phase synchronization or generalized
synchronization [Breakspear, 2002; Breakspear and Terry,
2002; Breakspear et al., 2004; Burns, 2004; Nunez et al.,
1997, 1999; Pereda et al., 2005; Stam, 2005, 2006]. Notice
that in contrast to the neurophysiological techniques with
high temporal resolution, fMRI offers a higher spatial reso-
lution allowing for a more accurate identification of spe-
cific anatomical areas constituting specific networks related
to various tasks or to the so-called ‘resting state’ [Salvador
et al., 2005]. When the study of functional interactions is
directed at identifying statistical interdependencies
between physiological time series recorded from different
brain areas, this is referred to as ‘functional connectivity’
[Fingelkurts et al., 2005; Lee et al., 2003]. More ambitious
approaches attempt to identify causal interactions from a
priori network models that are fitted to the data [e.g., Fris-
ton, 2002].
Despite the considerable success of these approaches in

characterizing normal and disrupted networks in the brain
related to normal cognition and various neuropsychiatric
disorders, further progress is hampered by (amongst
others) methodological limitations. As such, fMRI-based
methods suffer from a limited time resolution, which is
not trivial to overcome since it results from the recorded
metabolism. Neurophysiological methods suffer from the
fact that no unique relation exists between time series
recorded from the scalp and active sources in the brain.
Time series that are recorded from nearby electrodes or
sensors are very likely to pick up activity from the same,
i.e. common, sources, which gives rise to spurious correla-
tions between these time series; this is the problem of vol-
ume conduction. A very much related problem unique to
EEG is that of the active reference electrode. Such an active
reference electrode will contribute similar components to
EEG signals recorded at different electrodes, thereby yield-
ing a fake correlation. Nunez et al. [1997] have shown how
volume conduction and different types of reference elec-
trode may affect estimations of coherence. In line, Guevara
and coworkers [2005] have recently studied how an active
reference electrode can also seriously disturb estimations
of phase synchronization in EEG.
Two primary approaches have been suggested to deal

with what we will call ‘the problem of common sources’
(referring both to volume conduction as well as active ref-

erence electrodes) First, several groups have attempted to
reconstruct a suitable source space, which can subse-
quently be used as a basis to determine functional interac-
tions [Amor et al., 2005; David et al., 2002; Gross et al.,
2001; Hadjipapas et al., 2005; Lehmann et al., 2006; Tass
et al., 2003]. While these approaches are appealing,
because they allow for studying functional interactions
between well-specified anatomical regions, they also entail
problems. First, there is no unique choice for a source
model and each choice is ultimately arbitrary. Different
choices for a source model potentially affect the results of
the analysis of functional interactions. Second, the assump-
tions of some source models—for instance: indecency of
each of the sources—may interfere with the statistical
interdependencies between the sources [Hadjipapas et al.,
2005]. This problem may be particularly awkward in the
case of strongly interacting sources.
A second approach to the problem of common sources

tries to identify information in the correlation structure
between two time series that is unlikely to be explained by
common sources. Nunez et al. [1997] proposed to subtract
the random coherence from the measured coherence to
obtain a reduced coherence, which is less influenced by
volume conduction effects. This approach was recently
applied by Barry et al. [2005]. Computation of partial co-
herence is another approach to diminish effects of common
references and volume conduction [Mima et al., 2000].
Nolte and coworkers [2004] have argued that the imagi-
nary component of coherency is an index of correlations,
which cannot be caused by common sources—recall that
coherency is the complex-valued, normalized cross-spectral
density while coherence is given as its modulo [see Eq. (7)
below]. The magnitude of this imaginary component, how-
ever, is still not an ideal measure of the strength of the
interactions since it depends on both the amplitudes of the
signals and the magnitude of the phase delay. In a recent
study the imaginary part of coherency was less useful than
the coherence in demonstrating experimental effects
[Wheaton et al., 2005].
In the present article, we introduce an alternative mea-

sure of statistical interdependencies between time series,
which reflects the strength of the coupling but is expected
to be less sensitive to the influence of common sources
and amplitude effects. The measure, the phase lag index
(PLI) is based upon the idea that the existence of a consist-
ent, nonzero phase lag between two times series cannot be
explained by volume conduction from a single strong
source and, therefore, renders true interactions between
the underlying systems rather likely. Such consistent, non-
zero phase lags can be determined from the asymmetry of
the distribution of instantaneous phase differences
between two signals. We investigate the performance of
the PLI and compare it to a classical measure of phase
synchronization [phase coherence: Mormann et al., 2000]
as well as the aforementioned imaginary component of
coherency proposed by Nolte et al. [2004] in a well-known
model of coupled oscillators, EEG with an absence seizure,
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a data set of EEGs of Alzheimer patients and subjects with
subjective memory complaints and two MEG data sets.

METHODS

Signal Analysis

Phase synchronization and mean phase coherence

The concept of phase synchronization (for chaotic oscil-
lators) was extensively discussed by Rosenblum and cow-
orkers [1996]. In brief, rigorous phase locking between two
systems requires that their phase difference is constant,
while the weaker concept of phase entrainment introduced
by Rosenblum et al. [1996] only requires that the phase dif-
ference remains bounded (the bound has to be smaller
than 2p). If f1 and f2 are the phases of two time series,
and Df is the phase difference or relative phase, the gen-
eral n to m (with n and m some integers) phase synchroni-
zation can be found as:

j�fn;mj ¼ jnf1 �mf2j , const ð1Þ

holds. Using this definition, phase synchronization can be
determined for noisy, nonstationary, and chaotic signals.
In the remainder of this article, we restrict ourselves to the
(isofrequency) case with n ¼ m ¼ 1, that is, Df ¼ f1 � f2.
To compute the phase synchronization, it is necessary to
know the instantaneous phase of the two signals involved.
This can be realized using the analytical signal based on
the Hilbert transform [the approach with wavelets pro-
vides similar results: Bruns, 2004]. The analytical signal
z(t) is complex-valued with x(t) a real time series and ~xðtÞ
its corresponding Hilbert transform:

zðtÞ ¼ xðtÞ þ i~xðtÞ ¼ AðtÞ eifðtÞ ð2Þ

The Hilbert transform of x(t) is obtained via integration
as follows (see also Appendix B)

~xðtÞ ¼ 1

p
PV

Z 1

�x

xðsÞ
t� s

ds ð3Þ

where PV refers to the Cauchy principal value. The Hilbert
transform (3) is related to the original signal by a [1/2]p
phase shift that does not alter the spectral distribution (it
can be computed by performing a Fourier transform, shift-
ing all the phases by [1/2]p, followed by an inverse Fou-
rier transform). From Eq. (2), both the instantaneous am-
plitude A(t) and the instantaneous phase f(t) can be com-
puted by:

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½~xðtÞ�2 þ ½xðtÞ�2

q
and fðtÞ ¼ arctan

~xðtÞ
xðtÞ ð4Þ

Following (1) from the instantaneous phase of two sig-
nals, the phase difference or relative phase Df(t) is com-

puted as a function of time. In fact, there are several
methods to determine whether this phase difference is
bounded. Here, we use the notion of phase coherence (PC)
described by Mormann et al. [2000]. This notion basically
resembles the conventional statistics for circular (or direc-
tional) data [e.g., Mardia, 1972]. Instantaneous phase dif-
ferences are projected on the unit circle, and the length R
of the average resultant vector is computed via:

R ¼ hei�fi ¼ 1

N

XN�1

k¼0

ei�fðtkÞ
�����

����� ð5Þ

Here tk are discrete time-steps and N is the number of
samples. In the case of perfect phase locking (5) yields R ¼ 1,
whereas in the case of a random distribution of phases on
the unity circle R will tend to zero. Note that by construc-
tion, R is insensitive to the amplitudes of the signals and
only depends upon the phase relations between the two
signals, thus, contrasts more conventional coherence. R as
defined in (5) reflects both zero phase lag as well as
nonzero phase lag coupling of the phases between two
signals.

The phase lag index

The major aim of introducing the PLI is to obtain reli-
able estimates of phase synchronization that are invariant
against the presence of common sources (volume conduc-
tion and/or active reference electrodes in the case of EEG).
As will be explained below the central idea is to discard
phase differences that center around 0 mod p. One way to
realize this is to define an asymmetry index for the distri-
bution of phase differences, when the distribution is cen-
tered around a phase difference of zero. If no phase cou-
pling exists between two time series, then this distribution
is expected to be flat. Any deviation from this flat distribu-
tion indicates phase synchronization. For example, this fact
is employed by phase synchronization measures that are
derived from the Shannon information entropy of the
phase difference distribution [Rosenblum et al., 1996; Tass
et al., 1998]. A more detailed mathematical analysis of the
ideas underlying the PLI can be found in an appendix to
this article.
Asymmetry of the phase difference distribution means

that the likelihood that the phase difference Df will be in
the interval �p < Df < 0 is different from the likelihood
that it will be in the interval 0 < Df < p. This asymmetry
implies the presence of a consistent, nonzero phase differ-
ence (‘lag’) between the two time series. The existence of
such a phase difference or time lag, however, cannot be
explained by the influences of volume conduction from a
single strong source or an active reference, since these
influences are effectively instantaneous. The distribution is
expected to be symmetric when it is flat (no coupling), or
if the median phase difference is equal to or centers
around a value of 0 mod p (influence of strong common
source/active reference; please note that a median phase
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difference of 0 mod p does not imply that the mode or
modes of the distribution have to be equal to 0 mod p). It
is the latter case in which conventional measures of phase
synchronization provides high values, whereas the pro-
posed index yields low ones. An index of the asymmetry
of the phase difference distribution can be obtained from a
time series of phase differences Df (tk), k ¼ 1 . . . N in the
following way1

PLI ¼ jhsign½�fðtkÞ�ij ð6Þ

The PLI ranges between 0 and 1:0 � PLI � 1. A PLI of
zero indicates either no coupling or coupling with a phase
difference centered around 0 mod p. A PLI of 1 indicates
perfect phase locking at a value of Df different from 0
mod p. The stronger this nonzero phase locking is, the
larger PLI will be. Note that PLI does no longer indicate,
which of the two signals is leading in phase. Whenever
needed, however, this information can be easily recovered,
for instance, by omitting the absolute value in (6).
To determine whether PLI is significantly larger than

zero, one may introduce surrogate data [see, e.g., appendix
A in Pereda et al., 2005]. In brief, one has to compute PLI
for both the original time series a set of surrogate data that
match the original data but lack any correlations between
channels (e.g., by shifting each channel by some random
phase). The differences between PLI of original and surro-
gate data yield z-scores that suffice to define significance
levels.

The imaginary part of coherency

The complex coherency between two time series can be
defined as the cross spectrum divided by the product of
the two power spectra. Its mean over all frequencies can
alternatively be computed via the mean over time of the
corresponding analytical signals like:

c ¼ hA1A2e
i�fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hA2
1ihA2

2

q
i

ð7Þ

Here A1 and A2 are the amplitudes of the two time se-
ries, and Df is the instantaneous phase difference between
(the Hilbert transforms of) the two time series. The abso-
lute value of coherency, typically referred to as coherence,
is bounded between 0 and 1. The imaginary part of coher-
ency (IC) is given by:

lmfcg ¼ hA1A2 sin�fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2

1ihA2
2i

q ð8Þ

An important property of the imaginary part of the
coherency is that its (non vanishing) finite value cannot be
caused by a linear mixing of uncorrelated sources (‘volume
conduction’) and thus reflects true interactions of the sour-
ces underlying the two time series [Nolte et al., 2004], see
also Appendix A. However, the (absolute value of the)
imaginary part is not yet a useful measure of coupling
since it depends upon the strength of the coupling as well
as the magnitude of the phase difference.

Kuramoto Model

To study the influence of common sources on the ability
of PC, PLI, and IC to detect real changes in synchroniza-
tion, we used a well-studied model of globally coupled
limit-cycle oscillators that has originally been described by
Kuramoto [1975]. An excellent overview of the current
state of research on that model (or class of models) can be
found in Strogatz [2000] and for a brief introduction plac-
ing it in a wider context of research on complex networks
can be found in Strogatz [2001].
The model describes the phase dynamics of a large net-

work of N globally coupled limit-cycle oscillators. The
phase dynamics are given by the following differential
equation:

dui
dt

¼ vi þ K

N

XN
j¼1

sinðuj � uiÞ ð9Þ

In this equation, ui denotes the phase of the ith oscilla-
tor, which has the natural frequency vi, and K is the
strength of the connections between the oscillators. Thus,
the phase evolution of each oscillator is determined by its
natural frequency and the average influence of all other
oscillators. The natural frequencies are typically collected
from a Lorentzian distribution centered around v0 and
width g. That Lorentzian distribution is given by:

gðvÞ ¼ g

p½g2 þ ðv� v0Þ2�
ð10Þ

Usually, the global level of synchronization in the sys-
tem of N oscillators at time t can be described by an order
parameter r(t), which is defined as follows:

rðtÞ ¼ 1

N

XN
j¼1

eiuiðtÞ

������
������ ð11Þ

When r is averaged over time, it is abbreviated as r.
Note the close relation between r and the PC defined in
(5). In the absence of synchronization, r vanishes (r ¼ 0),
and when all oscillators are perfectly phase-locked, then
r ¼ 1 holds (please note that this parameter describes zero
phase lag synchronization). Kuramoto showed that the
model displays a phase transition from a desynchronized
to a partially synchronized state at a critical value K ¼

1Definition (6) requires that the phase difference is bounded in the
interval �p < Df � p. If, in contrast, phases are defined in
the interval 0 < Df � 2p, then (6) should be modified to
PLI ¼ jhsign½sin�fðtkÞ�ij.

r Assessment of Connectivity With PLI r

r 1181 r



Kcrit. When K < Kcrit, the system is not synchronized, and
r ¼ 0 (in the limit of N ? ?). When K > Kcrit, a single
cluster of synchronized oscillators emerges, which grows
for increasing K. For K > Kcrit, the order parameter r is
given by:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kcrit

K

r
with K > Kcrit ð12Þ

If the natural frequencies of the oscillators are taken
from the Lorentzian distribution described in (7), then the
critical connection strength Kcrit is given by:

Kcrit ¼ 2g ð13Þ

The phase transition is thus solely determined by the
width of the distribution of the natural frequencies.
Finally, the fluctuation in r(t) depends upon K. The stand-
ard deviation of r(t) is maximal at K ¼ Kcrit, and lower for
K < Kcrit as well as K > Kcrit. In other words, the variability
of the global synchronization level is maximal at the phase
transition.

Model simulations

For the simulation of the model, we used a system of
N ¼ 64 oscillators. Although theoretically an infinite num-
ber of oscillators is necessary for the analytical results to
hold, it has been shown that with only N ¼ 64, the model
can be readily used to explain various empirical results
[Kiss et al., 2002]. For each oscillator, Eq. (9) was numeri-
cally integrated with a time step of 2 ms (corresponding to
a sample frequency 500 Hz, the same as the sample fre-
quency of the EEG data sets described below). In all simu-
lations, the initial 5,000 iterations were discarded to elimi-
nate transients. The state of oscillator i at time t was given
by A sin ui—note that we used a constant amplitude A
that was equal across oscillators. The resulting amplitude
time series of the N oscillators were used to create the
‘EEG time series’ of the model.
We performed three series of simulations with mean fre-

quency 10 Hz (‘alpha band’) and a distribution width of
g ¼ 1 each. From the time series of 64 oscillators, time se-
ries of 64 EEG channels were created with different
degrees of overlap. The voltage Vi(t) of the ith EEG chan-
nel at time t was related to the state Oj(t) of the jth oscilla-
tor at time t as:

ViðtÞ ¼ 1

2i0 þ 1

Xj¼iþi0

j¼i�i0

OjðtÞ ð14Þ

Here i0 determines the contribution of multiple sources
to each EEG channel. The number of shared oscillators for
consecutive EEG channels was 2 i0. Simulations were per-
formed for i0 ¼ 0, i0 ¼ 4, and i0 ¼ 8, for values of K rang-
ing from 0 to 8, in steps of 0.5. For each value of i0 and K,

10 trials were done, and the resulting time series of 64
channels and 4,096 samples were subjected to synchroniza-
tion analysis. The synchronization analysis involved com-
putation of the PC, PLI, and IC for all possible combina-
tions of EEG channels.

Absence EEG

The influence of different montages on the ability of PC,
PLI, and IC to track changes in synchronization was inves-
tigated with an EEG record containing a classical absence
seizure with generalized 3 Hz spike wave discharges. The
EEG was recorded with the Brainlab (R) digital EEG sys-
tem (OSG, Rumst, Belgium). The EEG was recorded from
21 tin electrodes positioned according to the 10–20 system
(Fp1,2, F7,8, F3,4, A1,2, T3,4, C3,4, T5,6, P3,4, O1,2, Fz, Cz, and
Pz) against an average reference (including all channels
except Fp1,2 and A2,1). ECG was recorded in a separate
channel. Electrode impedance was below 5 kOhm. Filter
settings during recording were time constant 1 s, high-
pass cut-off frequency 70 Hz, sample frequency 500 Hz,
and A-D precision 16 bit.
Eleven consecutive epochs of 4,096 samples (8.19 s) were

selected off line and converted to ASCII. This series of con-
secutive epochs contained preictal (epoch 1–5), ictal (epoch
6 and 7), and postictal (epoch 8–11) EEG. Reformatting
and analyses of this EEG were realized with the
DIGEEGXP software developed at the department. The fol-
lowing montages were studied: (1) average reference
(including all 21 channels except Fp1,2 and A2,1); (2) linked
ear electrodes A1,2; (3) source (local average computed
from the 3 or 4 surrounding electrodes); (4) bipolar short
distance anterior to posterior chains; (5) Cz. For each of
these montages PC, PLI, and IC were computed for all
possible pairs of EEG channels for each 4,096 samples
epoch after off-line digital filtering between 0.5 and 48 Hz.
From this, an overall mean synchronization as well as sub
averages of intra- and inter-hemispheric short and long
distances were computed.

Alzheimer and Control EEGs

The next data set involved a reanalysis of EEGs
recorded in 28 subjects, 15 with a diagnosis of probable
Alzheimer’s disease (4 males; mean age 69.6 years; S.D.
7.9; range 54–77); and 13 control subjects with only subjec-
tive memory complaints (‘‘SC’’; 6 males; mean age 70.6
years; S.D. 7.7; range: 57–78). Mean MMSE score of the
Alzheimer patients was 21.4.8 (S.D. 4.0; range 15–28);
mean MMSE score of the SC subjects was 28.4 (S.D. 1.1;
range 27–30). This data set was previously analyzed with
the synchronization likelihood and graph theoretical meas-
ures, and is known to display a loss of beta band connec-
tivity in the AD group [Stam et al., 2006]. EEG recording
and settings were exactly the same as for the absence EEG
described above. From all recordings, 4 epochs of 4,096
samples (8.19 s) were stored as ASCII files for further anal-
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ysis. After off-line digital filtering between 13 and 30 Hz,
the PC, PLI, and IC were determined from all epochs and
all channel pairs, and averaged over the four epochs.
Further averaging was performed to obtain the total level
of synchronization, and subaverages for short and long
distances for intra- and inter-hemispheric electrode pairs
as follows: (1) intrahemispheric short (mean of: Fp2-F4, F4-
C4, C4-P4, P4-O2, F8-T4, T4-T6, Fp1-F3, F3-C3, C3-P3, P3-
O1, F7-T3, T3-T5); (2) intrahemispheric long (mean of: F8-
T6, Fp2-C4, C4-O2, Fp1-C3, C3-O1, F7-T5); (3) interhemi-
spheric short (mean of: Fp2-Fp1, F8-F4, F4-F3, F3-F7, T4-
C4, C4-C3, C3-T3, T6-P4, P4-P3, P3-T5, O2-O1); (4) interhe-
mispheric long (mean of F8-F7, T4-T3, T6-T5).

MEG Data

To illustrate the influence of volume conduction on the
spatial pattern of MEG, recordings of two healthy male
subjects (taken from the control group of on ongoing Alz-
heimer study) were analyzed. Magnetic fields were
recorded while subjects were seated inside a magnetically
shielded room (Vacuumschmelze GmbH, Hanau, Germany)
using a 151-channel whole-head MEG system (CTF Sys-
tems, Port Coquitlam, BC, Canada). A third-order software
gradient was used with a recording pass band of 0.25–125
Hz. Fields were measured during a no-task, eyes-closed
condition. At the beginning and at the end of each record-
ing, the head position relative to the coordinate system of
the helmet was recorded by leading small alternating cur-

rents through three head position coils attached to the left
and right pre-auricular points and the nasion on the sub-
ject’s head. Head position changes during a recording con-
dition up to �1.5 cm were accepted. During the MEG re-
cording, the patients were instructed to close their eyes to
reduce artifact signals because of eye movements.
For the present analyses, 149 of the 151 channels could

be used. MEG recordings were converted to ASCII files
and down-sampled from 625 to 312.5 Hz. From these
ASCII files, artifact free epochs of 4,096 samples (13.083 s)
were selected by visual inspection and filtered in the alpha
band (8–13 Hz).

RESULTS

Kuramoto Model

Results for the Kuramoto model are summarized in Fig-
ures 1–3. Figure 1 shows the mean PC, averaged over all
pairs of the 64 simulated EEG channels, as a function of
coupling strength K and degree of overlap (number of
oscillators contributing to each EEG channel). In the case
of no overlap, PC stayed at relatively low levels for K
lower than 2. From K ¼ 2 onwards, there was a sudden
and strong increase of PC, which leveled of for high values
of K (recall that we used g ¼ 1, that is, Kcrit ¼ 2). This
behavior of PC is in close agreement with the analytical
results for the model, that is, the known bifurcation to at
the critical level of K ¼ Kcrit ¼ 2. When the overlap

Figure 1.

Mean phase coherence (PC, averaged over all possible pairs of

64 modeled EEG channels) as a function of coupling strength K

in the Kuramoto model with 64 oscillators as a function of over-

lap between subsequent EEG channels (CS: common sources,

ranging from 0 to 16). All results are the average to 10 trials.

The first 5,000 samples of each trial were ignored. Epoch length

for each trial was 4,096 samples. Mean frequency of the oscilla-

tors in the model was 10 Hz, the width of the Lorentz distribu-

tion g ¼ 1. Sample frequency was 500 Hz. These parameters

yield a critical value of Kcrit ¼ 2.
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between EEG channels was modified from 0 to 8 clear
changes in PC were found. First, the entire curve was
shifted toward a higher level for all values of K. Second,
the relative increase in PC started at lower values than the
analytically expected value of Kcrit ¼ 2. Increasing the level
of overlap between EEG channels from 8 to 16 showed an
upward displacement of the curve, but only for values of
K < 2.5. The relative increase of PC started at even lower
values of K. Thus, while PC was sensitive to true changes
in the connection strength K, it was also quite sensitive to
spurious influences of common sources, which changed
both the absolute values as well as the qualitative behavior
of PC as a function of K.
The results for PLI are depicted in Figure 2. In the ideal

case without common sources, PLI showed low values for

K < Kcrit, and increasing values for higher K as expected
from theory. Compared to PC, however, PLI started to
increase at somewhat lower values of K. Adding the influ-
ence of common sources increased PLI values slightly for
K < 2.5 and decreased the PLI values for K > 2.5. For very
high values of K, PLI underestimated the true level of cou-
pling. There was no clear difference between an overlap of
8 or 16 oscillators. Thus, PLI also showed the expected
increase as a function of K but compared with PC, it was
less sensitive to the spurious influence of common sources.
Finally, the results for IC are shown in Figure 3. In the

absence of volume conduction, IC started to increase for
K > Kcrit, but never reached values much higher than IC ¼
0.2 even for very high coupling strength K (note that the
upper bound for IC is 1). That is, IC systematically under-

Figure 2.

Mean phase lag index (PLI, aver-

aged over all possible pairs of

64 modeled EEG channels) as a

function of coupling strength K

in the Kuramoto model. Param-

eters are identical with Figure 1.

Figure 3.

Mean absolute value of the

imaginary part of coherency (IC,

averaged over all possible pairs

of 64 modeled EEG channels) as

a function of coupling strength

K in the Kuramoto model. For

parameters see Figure 1.
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estimated the true coupling strength in the model. For
increasing effects of volume conduction, IC increased for
K � 2.5 and decreased for K > 2.5. Hence, the effects of
simulated volume conduction further compromised the
modest sensitivity of IC to increase in coupling strength.

EEG and MEG Recording

Absence EEG

The transition between inter-ictal to ictal EEG is shown
in Figure 4. The results for the absence EEG are given in
Figures 5–7. Figure 5 shows the mean PC averaged over
all possible electrode pairs for each of the epochs and for
various different montages. By and large PC stayed
roughly constant at a baseline level during the first 5 non-
seizure epochs. After that, we found a sudden increase in
PC in epoch 6 and 7, which contained the generalized
spike-and-wave discharges. In the final epochs (8–11), PC
decreased to the baseline level.
As can be seen in Figure 5, the montages had quite an

influence on PC values. The lowest values were found for
the source (local average) derivation. Slightly higher values
were obtained for the bipolar derivation. Values of PC
were even higher for average reference and the linked ears
derivation. There the linked ears derivation showed the
strongest relative increase by a factor of 2.5 during the sei-
zure as compared to baseline. The highest values during
baseline as well as the lowest values during the seizure
were obtained with the Cz reference; relative increase was

less than a factor of 1.5. Overall, the type of reference
strongly influenced the absolute values of PC as well as
the relative increase during the seizure.
The results for PLI are depicted in Figure 6. During the

five preseizure epochs, PLI stayed more or less constant at
a low level slightly above 0.1. During the seizure epochs 6
and 7, a clear increase could be found. This increase was
followed by an immediate decrease in epochs 8–11. During
the preseizure epochs, PLI values were hardly influenced
by different derivations. During the seizure differences did

Figure 4.

Detail of EEG recording with absence seizure consisting of �3 Hz generalized spike-and-slow

wave discharges. Average reference, filter settings: high pass 0.5 Hz and low pass 48 Hz. Vertical

blue bars indicate 1 s intervals. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

Figure 5.

Mean PC (averaged over all pairs of 21 channels) for different

montages (average, source, mastoids, bipolar, and Cz). Each

epoch has a length of 4,096 samples (8.18 s). Epoch no. 6 and 7

correspond to the seizure.
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emerge: PLI values were low for the Cz derivation, inter-
mediate for the average reference and the linked ears ref-
erence, and highest for the bipolar and source derivation.
The relative increase in PLI during the seizure was
roughly a factor of 3 for the worst reference (Cz) and a fac-
tor of 5 for the best (source). In the early post seizure
epochs 8 and 9, PLI values were still higher than in the
pre-seizure epochs, especially for the average reference
and the linked ears reference. Overall, PLI undoubtedly
showed increases during the seizure epochs and was less
influenced by the different montages than PC, although
differences could still be seen during the seizure.
Expressed as relative increase (synchronization during sei-
zure compared to baseline) PLI performed better than PC
for all montages.
The results for IC are shown in Figure 7. For the presei-

zure epochs, the IC of the different montages fluctuated

around 0.04. After that, we found a clear increase during
the seizures epochs (6–7), which was followed by a grad-
ual decrease in the postictal epochs. The different mon-
tages had only a small effect on IC for the pre- and post-
ictal epochs, but during the seizure there were differences:
IC was relatively low for Cz (relative increase factor 2) and
high for the bipolar montage (relative increase factor 3.5).
The other montages showed intermediate values. Thus, for
detecting a relative increase in synchronization from pre
seizure to seizure epochs, IC performed better than PC
and only slightly worse than the PLI.

Alzheimer and control EEG

Results of the synchronization analysis of the Alzheimer
and control EEGs are shown in Figures 8–10. Average PC
in the beta band was lower in Alzheimer patients than in
controls (P ¼ 0.023; Fig. 8). Analyses of sub averages for
long and short distances and intra/interhemispheric elec-
trode pairs did not reveal significant differences, although
there was an almost significant (P ¼ 0.054) decrease in
short distance intra hemispheric PC in the Alzheimer
group. Results for PLI are given in Figure 9. The average
PLI in the beta band was significantly lower in the Alzhei-
mer group compared with controls (P ¼ 0.009). Further
analysis revealed that PLI values for both short (P ¼ 0.032)
and long distance (P ¼ 0.016) intrahemispheric electrode

Figure 7.

Mean IC (averaged over all pairs of 21 channels) for different

montages (average, source, mastoids, bipolar, and Cz). Each

epoch has a length of 4,096 samples (8.18 s). Epoch no. 6 and 7

correspond to the seizure.

Figure 8.

Mean PC for 15 subjects with Alzheimer’s disease and 13 control

subjects with subjective memory complaints. Error bars indicate

standard deviations. Results are the average of four epochs (aver-

age reference, epoch length 4,096 samples, 21 channels, digitally

filtered between 13 and 30 Hz, sample frequency 500 Hz). Total:

average of all pairs of 21 channels; intra_s: average of all short,

intrahemispheric electrode pairs; intra_l: average of all long intra-

hemispheric electrode pairs; inter_s: average of all short interhe-

mispheric electrode pairs; inter_l: average of all long interhemi-

spheric electrode pairs. Details of the specific electrode pairs

making up the four sub averages can be found in the methods

section.

Figure 6.

Mean PLI (averaged over all pairs of 21 channels) for different

montages (average, source, mastoids, bipolar, and Cz). Each

epoch has a length of 4,096 samples (8.18 s). Epoch no. 6 and 7

correspond to the seizure.
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pairs were lower in the Alzheimer group. Results for IC
are shown in Figure 10. The average IC was significantly
lower in Alzheimer patients (P ¼ 0.002). Further analysis
showed that this was due to a significantly lower IC in
Alzheimer patients for short intrahemispheric distances
(P ¼ 0.005) and long interhemispheric distances (P ¼
0.013). Overall, PLI and IC were better in distinguishing
between Alzheimer patients and controls than PC. Also,
PC showed a clear drop from short to long distances,
which was less pronounced for IC and virtually absent for
PLI.

MEG data

MEG data of two healthy subjects were analyzed to
illustrate the influence of volume conduction on spatial
patterns of functional connectivity. Results are summar-
ized in Figure 11. In both subjects, the highest values for
the 8–13 Hz PC in the no-task, eyes-closed state showed a
characteristic pattern with a clear predominance of small
distances and a virtual absence of long distances. In con-
trast, the other measures (PLI and IC) displayed a different
pattern. For subject A (upper row), PLI showed the strong-
est correlations between a cluster of channels above right
temporal/occipital areas and a number of strong left cen-
tral to right temporal/occipital correlations. The IC had a
similar spatial pattern as well as a number of left and right
fronto temporal correlations. For subject B (lower row),
PLI showed strong correlations radiating from occipital
regions to temporal and frontal regions as well as left/
right correlations over the posterior areas. The IC showed
a somewhat similar pattern but with more relatively short
distance correlations over the right temporal area.

DISCUSSION

We have introduced the PLI as a novel measure of
phase synchronization exploiting the asymmetry of the
distribution of instantaneous phase differences between

two signals. In numerical simulations of the Kuramoto
model, PLI increased as a function of coupling strength
contrasting IC and was less sensitive to volume conduction
than PC. In EEG absence data, PC was more sensitive to
montage effects than both PLI and IC. PLI and IC per-
formed better in detecting loss of EEG beta band connec-
tivity in Alzheimer patients compared with controls.
Finally, the spatial pattern of MEG alpha band connectiv-
ity based upon PC was different form the patterns based
upon either PLI or IC, which were quite similar to each
other.
We used the Kuramoto model of globally coupled oscil-

lators to study the effects of changes in true synchroniza-
tion and ‘volume conduction’ on PC, PLI, and IC for two
major reasons: (i) the oscillators may present a natural
model for oscillatory EEG or MEG activity; (ii) the behav-
ior of the model is very well studied and, e.g., the onset of
synchronization as a function of coupling strength is
exactly known [Strogatz, 2000]. We modeled ‘volume con-
duction’ quite simplistically by allowing for more than a
single oscillator to contribute to each simulated EEG chan-
nel. While this construction strongly exaggerated effects of
volume conduction, it allowed for testing the behavior of
the various measures under extreme conditions. Notice
that modeling realistic sources in a volume conductor is
beyond the scope of the present paper. Also, use of a more
biologically inspired model of the EEG would have the
disadvantage that in such models the exact relation
between changes in coupling strength and synchronization
is not analytically accessible.
Our model simulations showed that, as expected, both

PC and PLI responded to increases in the coupling
strength in the form of a sudden increase at the bifurcation
point, K ¼ Kcrit. While this result for PC appears obvious,
it underlines the PLI’s capacities, although PLI is con-
structed to just detect non zero phase lag coupling. That is,
PLI is able to detect synchronization in the Kuramoto
model with moderate coupling strength. With very high

Figure 10.

Mean IC for 15 subjects with Alzheimer’s disease and 13 control

subjects with subjective memory complaints; cf. Figure 8.

Figure 9.

Mean PLI for 15 subjects with Alzheimer’s disease and 13 con-

trol subjects with subjective memory complaints; cf. Figure 8.
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values of K, the mean phase difference between all the
oscillators vanishes, which might explain why the PLI
does not reach a value of one. Compared with PLI, IC per-
formed much worse, probably because it simply reflects
the small value of the mean phase difference even for rela-
tively small values of K. The model showed that PC is
strongly influenced by the simulated volume conduction
effects, although it still increases with increases in coupling
strength. This suggests that absolute values of PC cannot
be interpreted in the context of (unknown) influences of
volume conduction, while changes in PC between experi-
mental conditions and/or groups could still reflect changes
in coupling. However, if the volume conduction effects
also change as a function of condition or group, then this
conclusion is no longer valid. Although PLI is not immune
to the volume conduction, these effects are clearly smaller
than for PC, especially for moderately high values of K.
This readily suggests that for all practical purposes PLI
might be a more reliable measure of ‘‘true’’ synchroniza-
tion than PC. The IC was clearly influenced by the simu-

lated volume conduction in the model, especially for high
values of K. This influence might be caused by a (relative)
decrease of coherency’s imaginary component in the case
of a simultaneous increase in the value of the real compo-
nent—the latter will increase if the zero phase lag coupling
in the data increases. Thus, while the existence of an imag-
inary component cannot be explained by volume conduc-
tion, its value can still be influenced by it.
While being useful for studying certain features of cou-

pling measures under well-controlled circumstances, mod-
eling cannot predict the extent to which these measures
will perform with experimental data. To illustrate their
performance, we studied the paradigmatic case of strongly
increased synchronization (EEG in absence seizure) and an
example of a fairly subtle decrease of synchronization and
spatial connectivity patterns in MEG. In the absence data,
all three measures showed an increase during the seizure.
Note that increased synchronization during absence seiz-
ures is a well-known phenomenon, which should be repro-
duced by any useful measure of synchronization [Amor

Figure 11.

Illustration of the spatial distribution of the strongest correla-

tions between pairs of MEG channels using either phase coher-

ence (PC, left column), the phase lag index (PLI, middle column)

or the imaginary part of coherency (IC, right column). Data are

collected from two different healthy subjects (upper row and

lower row). In all maps, only correlations above threshold are

displayed. The threshold was chosen such that sufficiently many

connections were visible to allow for a proper evaluation of the

spatial pattern of supra threshold connections. Eyes closed, no

task MEG (sample frequency 312.5 Hz; filter settings: 8–13 Hz).

Epoch length 4,096 samples (13.083 s).
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et al., 2005; Mormann et al., 2000]. For EEG, however,
different montages and active reference electrodes may
strongly influence the outcome of estimated synchroniza-
tion between the channels [Guevara et al., 2005; Lachaux
et al., 1999; Nunez et al., 1997].
The influence of montage was quite clear for the PC,

where both preictal, ictal, and postictal values were
affected. The PC values were lowest for the source deriva-
tion and highest for the Cz reference. The source deriva-
tion performed best in terms of the relative increase during
the seizure. These results agree with studies on coherence
by Nunez and coworker [1997]. Note that Mima et al.
[2000] already suggested the relative superiority of the
source derivation for estimating true coupling. In contrast
to PC, both PLI and IC were less sensitive to influences of
montage. In the pre- and post-ictal phases, montage had
almost no effect but during the seizure we found differen-
ces. There, the source montage performed best, especially
for PLI showing a relative increase when compared with
preictal levels by a factor of 5 (compared with a maximum
increase by a factor of 3.5 for IC). Thus, even with PLI and
IC, the choice of montage still has an impact but perform-
ance in terms of detecting changes in levels of synchroni-
zation is clearly increased when compared with PC.
The Alzheimer data set was used to study the sensitivity

of the three measures in detecting subtle changes in beta
band coupling. Such changes were already demonstrated
for this data set in another study [Stam et al., 2006]. The
PC showed a moderately significant overall loss of beta
band synchronization but could not further differentiate
this group effect in long/short distance of intra-/inter-
hemispheric components. Of interest, PC was consistently
higher for short distances implying volume conduction
effects. In contrast, both PLI and IC showed more signifi-
cant group differences and revealed more details of the
types of connections contributing to this group difference.
Also, especially for PLI, there was almost no difference
between short and long distances, which suggests a dimin-
ished influence of volume conduction. An important con-
clusion that can be drawn from this data set is that even in
the noisy beta band, which shows only weak coupling and
small group differences, it is possible to detect non zero
phase lag synchronization. The existence of nonzero phase
lag coupling has already been shown at the neuronal level
[Roelfsema et al., 1997] and in intracranial recordings
[Tallon-Baudry et al., 2001]. While zero phase lag coupling
could be due to both volume conduction/active reference
electrodes and true coupling, nonzero phase lag coupling
is more likely to reflect true coupling of underlying sour-
ces. Thus, the existence of this type of coupling in resting
state brain activity and the fact that it is changed in a neu-
rological disorder are of considerable theoretical interest.
In the study of Thatcher et al. [2005], coupling with a
small phase lag between frontal EEG channels was the
EEG measure most strongly correlated to intelligence.
Finally, we studied whether volume conduction effects

in MEG might reflect the spatial patterns of estimated

functional connectivity. Recently, Langheim et al. [2006]
described such patterns in some detail. The pattern of
alpha band connectivity based upon PC, displayed by
showing sensor pairs with a PC above a certain threshold
as a two-dimensional graph, showed some similarity to
the patterns in the paper by Langheim and coworkers.
However, both PLI and IC showed a completely different
spatial pattern. Remarkably, PLI and IC patterns were
quite similar to each other in both subjects. The compari-
son between the PC pattern on the one hand and the PLI
and IC patterns on the other hand clearly revealed that the
PC pattern was dominated by local connections between
adjacent sensors. Such local connections were absent in
PLI and IC patterns, which were dominated by long dis-
tance interactions. This result suggests that, for MEG, PC
estimates for nearby channels were strongly influenced by
volume conduction and that this influence was diminished
in the case of PLI and IC.
Quantifying (the strength of) interaction by PLI, and simi-

larly by IC, one certainly accepts the risk to miss linear but
functionally meaningful interactions, which, in principle,
might be expressed in near zero phase coherence. Here, we
would like to stress that this potential omission is deliberate
and, while realizing that the remaining information might
be incomplete, PLI (and IC) are clearly free of any artefacts
of volume conductions. We believe that the latter are the by
far most frequent cause for misinterpretation of more gen-
eral measures of interaction. We must admit, however, that
the obvious question ‘‘How much do we miss?’’ can yet not
be answered as it, above all, depends on the specific nature
of the system under study.2

Nolte and colleagues [2004] have shown that a nonvan-
ishing imaginary component of coherency cannot be
explained by volume conduction. Such a rigorous state-
ment yet awaits to be proven for PLI, although the correla-
tion structure of the analytical signal (which forms the basis
for our phase definition) does indicate certain symmetries
of the corresponding phase distribution (see Appendix B).
Furthermore, Guevara and coworkers recently expressed
their concerns about phase synchronization with lags
[Guevara et al., 2005]. Lachaux et al. stated that ‘‘Another
common assumption is that the phase difference between
electrodes should be zero in case of conduction synchrony.
This is usually false . . .’’ [Lachaux et al., 2005: page 202].
Thus, the fact that PLI is only sensitive to phase synchroni-
zation with a nonzero phase lag is no guarantee that it
will not be affected by volume conduction. Our results
suggest, however, that it may be significantly less sensitive

2Already a conduction delay of 2 ms within a system of 50 ms pe-
riod is fairly large in commonly studied systems, since, e.g., IC
can be as large as sin(2p � 2 ms/50 ms) ¼ 0.25. Hence, not only
that our measures are blind against linear interactions, they also
appear almost blind to symmetric systems where the delay is
present but not detectable. Although we believe that a significant
portion of brain systems is substantially asymmetric, we are, how-
ever, not able to prove, yet.
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to such effects than the commonly used PC. Also, in con-
trast to IC, PLI is a fairly simple measure of phase syn-
chronization that is closely related to estimates based on
the phase distribution’s (Shannon) entropy [e.g., Tass
et al., 1998]. We have shown that PLI performs quite well
both in a model as well as in different types of empirical
data. For the latter, the PLI and IC performed equally well
and were superior to PC. In conclusion, we suggest using
one of these measures when studying functional connectiv-
ity with EEG or MEG, especially when this analysis is
based on signal space.

APPENDIX

Appendix A: Imaginary Part of Coherency

To compute the frequency dependent correlations
between different encephalographic channels, we assume
that {sk(f)} is a finite set of statistically independent com-
mon sources yielding signals xm at channel m in the form
of a linear combination like

xmðf Þ ¼
X
k

amkskðf Þ: ðA1Þ

Statistical independence implies the sources’ cross-spec-
tral densities—for the sake of legibility, we here omit any
normalization and use the cross-spectral density rather
than coherency, cf. Eq. (7)—have the form

hskðf Þs�k0 ðf Þi ¼ dkk0 hjskðf Þj2i ¼ 1 if k ¼ k0

0 otherwise

� �
hjskðf Þj2i;

ðA2Þ

in which dkk0 denotes the Kronecker-delta. By the use of
Eq. (A2) one can readily conclude that the cross-spectral
density Smn between xm and xn is real since we find

Smnðf Þ ¼ hxmðf Þx�nðf Þi ¼ðA;1Þ
X
kk0

amkank0 hskðf Þs�k0 ðf Þi

¼ðA;2Þ
X
kk0

amkank0dkk0 hjskðf Þj2i ¼
X
k

amkankhjskðf Þj2i ðA3Þ

In words, a set of uncorrelated sources sk (�volume con-
duction), each of which being recorded at channel m with
weighting factor amk, only causes a real-valued coherency
(the cross-phase spectrum vanishes for phases other than 0
or 6p, dependent on the sign of Smn).
By the same reasoning, but being a bit more realistic, we

pick two distinct sources, sp and sq and assume that those
are (nonlinearly) correlated. Thus, we replace Eq. (A2) by

hskðf Þs�k0 ðf Þi ¼ dkk0 hjskðf Þj2i
þ dkpdk0qhspðf Þs�qðf Þi þ dkqdk0phsqðf Þs�pðf Þi ðA4Þ

with p = q and hspðf Þs�qðf Þi ¼ hsqðf Þs�pðf Þi 2 �. Using Eq. (A4)
yields for the cross-spectral density between xm and xn

Smnðf Þ¼ð1Þ
X
kk0

amkank0 hskðf Þs�kðf Þi ¼ð4Þ ampanqhspðf Þs�qðf Þi

þ amqanphsqðf Þs�pðf Þi þ
X
k

amkankhjskðf Þj2i ðA5Þ

Hence, volume conduction may alter the coherency,
which is originally caused by correlated sources sp and sq,
only by a shift along the real axis: the source sk do not
intermingle along some nontrivial direction, although
here two of them are already correlated. That is, if
hspðf Þs�qðf Þi is real-valued (i.e., has a mean phase at 0 or
6p), then an additional, arbitrary number of uncorrelated
sources that ‘‘infiltrate’’ the recording channels via volume
conduction cannot rotate coherency toward an imaginary
direction. Put differently, a phase distribution that does
not peak around 0 or 6p cannot be caused by volume
conduction.

Appendix B: Correlation of Analytic Signals

To compare the above results with the numerical esti-
mates based on simulation and empirical data, we use the
same line of reasoning but stay in the time-domain rather
than (Fourier-) transforming to a frequency representation.
Phase will then no longer be given by the cross-spectrum
in the Fourier domain but via the Hilbert phase. In detail,
we take

xmðtÞ ¼
X
k

amkskðtÞ; ðB1Þ

for which we construct the analytical signal using the Hil-
bert transform (i.e. the convolution with t�1)

H xmðtÞ½ � ¼ xmðtÞ � 1
t
¼ PV

Z 1

�1

xmðsÞ
t� s

ds; ðB2Þ

the integral represents the Cauchy principal value (PV),
see also Eq. (3). This convolution forms the imaginary part
of the analytical signals that we write as

xmðtÞ7!ZmðtÞ ¼ xmðtÞ þ i

p
PV

Z 1

�1

xmðsÞ
t� s

ds ¼
X
k

amkykðtÞ;

ðB3Þ

where yk are the analytical signals corresponding to
sources sk (for the equality on the right-hand side, we
used the linearity of Eq. (B1) and dissociativity of the con-
volution).
For the sake of simplicity, we always assume that all

sources have vanishing mean, i.e. hskðtÞi ¼ 0. Further, we
assume that the sources are uncorrelated3 by means of

3Equation (B4) forms a much weaker assumption than Eq. (A2) as
is displays only the absence of linear correlations rather than com-
plete statistical independence.
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hSkðtþ�ÞSk0 ðtÞi ¼ dkk0 hSkðtþ�ÞSk0 ðtÞi ¼ dkk0akð�Þ; ðB4Þ

ak denotes the autocorrelation function of source sk. This
readily yields vanishing cross-correlations for the corre-
sponding analytical signals, that is, we find

hykðtþ�Þyð�Þk0 ðtÞi ¼ dkk0 hykðtþ�Þyð�Þk0 ðtÞi ðB5Þ

Notice that we write the conjugate complex in brackets
to leave the definition of the correlation function of com-
plex signals open, at least for the time being. Notice also
that we are primarily interested in the instantaneous corre-
lation, that is, at the end of the day we will compute the
limit D ? 0. Hence, we need to compute the autocorrela-
tion of the analytic signal, for which we obtain (for the
sake of legibility we dropped the PV-notation in front of
the integrals)

hykðtþ�Þyð�Þk ðtÞi ¼ hskðtþ�ÞskðtÞi

� 1

p2

Z 1

�1

Z 1

�1

hskðsÞskðs0Þi
ðtþ�� sÞðt� s0Þ ds0ds

þ i

p

Z 1

�1

hskðsÞskðtÞi
tþ�� s

� hskðtþ�ÞskðsÞi
t� s

� �
ds ðB6Þ

The first term on the right-hand side of Eq. (B6) is finite,
while the last ones cancel each other as

Z 1

�1

hskðsÞskðtÞi
tþ�� s

ds ¼
Z 1

�1

akðs� tÞ
tþ�� s

ds ¼
Z 1

�1

akðsÞ
�� s

ds ¼

�
Z 1

�1

akðtþ�� sÞ
t� s

ds ¼ �
Z 1

�1

hskðtþ�ÞskðsÞi
t� s

ds; ðB7Þ

which, without the conjugate complex form (‘+’), trivially
yields zero for the last terms in Eq. (B6) and. For the con-
jugate complex form (‘�’), one can exploit the symmetry
of the autocorrelation function by means of akðsÞ ¼ akð�sÞ
when taking the limit D ? 0 (see above). For the middle
term in Eq. (B6) we find

Z 1

�1

Z 1

�1

hSkðsÞSkðs0Þi
ðtþ�� sÞðt� s0Þ ds0ds

¼
Z 1

�1

Z 1

�1

a~xðs� s0Þ
ðt� sþ�Þðt� s0Þ ds0ds

¼
Z 1

�1

Z 1

�1

akðs� s0Þ
ðsþ�Þs0 ds0ds: ðB8Þ

As announced, we evaluate the limit for D ? 0, exploit
the symmetry of ak(s), and, of course, we assume the inte-
grability of the autocorrelation function ak(s) divided by s
that results in

hykðtÞyð�Þk ðtÞi ¼ akð0Þ � 1

p2

Z 1

�1

Z 1

�1

akðs� s0Þ
ss0

ds0ds ¼ bðþÞ
k ;

ðB9Þ

In summary, we have

lim
�!0

hykðtþ�Þyð�Þk0 ðtÞi ¼ dkk0b
ðþÞ
k ; ðB10Þ

so that the cross-correlation between analytical signals at
channels m and n becomes

hzmðtÞzð�Þn ðtÞi ¼
X
kk0

amkank0dkk0b
ðþÞ
k ¼

X
k

amkankb
ðþÞ
k : ðB11Þ

Importantly, Eq. (B11) yields only real values so that the
phase of the cross-correlation is always 0 or 6p in agree-
ment with Eq. (A3).
The next step is to allow for two sources to be nontri-

vially correlated and to look for potential effects of the
present independent sources. In line with Eq. (A4), we
assume that

hskðtÞsk0 ðtþ�Þi ¼ dkk0akð�Þ þ dkpdk0qapqð�Þ þ dkqdk0paqpð�Þ:
ðB12Þ

This causes the autocorrelation as summarized in Eq.
(B9) but also generates additional cross-terms of the form

hykðtÞyð�Þk0 ðtÞi ¼ dkk0b
ðþÞ
k þ dkpdk0qbpq þ dkqdk0pbqp ðB13Þ

Consequently, Eq. (B11) can be replaced by

hzmðtÞzð�Þn ðtÞi ¼
X
kk0

amkank0 ðdkk0bðþÞ
k þ dkpdk0qbpq þ dkqdk0pbqpÞ

¼ ampanqbpq þ amqanpbqp þ
X
k

amkankb
ðþÞ
k

ðB14Þ

In words, conform with Eq. (A5), volume conduction
may change the (zero-lag or instantaneous) correlation
between two analytical signals zm and zn at channels m
and n, which is originally caused by two nontrivially cor-
related sources sp and sq, only by a shift along the real
axis.
In fact, this correlation structure does not imply that

a symmetric distribution of the corresponding relative
Hilbert phase (i.e. peaking at 0 or 6p) necessarily stays
symmetric in the presence of common sources, as this also
depends on the corresponding Hilbert amplitudes, the
sources independence renders a correlated impact of
amplitudes unlikely. Put differently, it is quite likely that
the uncorrelatedness of sources (or even their complete
statistical independence) causes an invariance of the phase
distributions symmetry against the presence of common
sources. A rigorous proof for this, admittedly somewhat
hand waving, argument, is yet to be found.
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